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FOREWORD

The work described herein was conducted for the NASA-Lewis Research
Center, Cleveland, Ohio, by the Advanced Programs Department of
Rocketdyne, a division of Rockwell International. The study was
conducted in accordance with Contract NAS3-12051, Rocketdyne G.O.
09222.

This report (NASA CR-120968; R-8973-3), which summarizes and demon-
strates the use of injector-thrust chamber design criteria/techniques
developed under Contract NAS3-12051, is one of three reports emerging
from the subject contract. Separate reports describing the like
doublet (NASA CR-120935; R-8973-1) and coaxial injector (NASA
CR-120936; R-8973-2) characterization portions of the contract also
were published.

Mr. L. H. Gordon of the NASA-Lewis Research Center served as NASA
Technical Project Manager. The Rocketdyne Program Manager was Mr.
H. G. Diem., Technical guidance of the program was provided by Mr.
S. D. Clapp and Dr. D. T. Campbell.

Important contributions to the conduct of the program were made by
the following Rocketdyne personnel: R. R. Doubleday, J. T. Sabol,
D. Zwald, and R. Barnsdale. :
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ABSTRACT

This report provides injector design guidelines for gas/liquid pro-
pellant systems. Information for this report was obtained from a
30-month applied research program (Contract NAS3-12051) encompas-
sing an analytical, design, and experimental effort to relate in-
jector design parameters to simultaneous attainment of high perfor-
mance and component (injector/thrust chamber) compatibility for
gas/liquid space storable propellants. The gas/liquid propellant
combination studied was FLOX (82.6% F,)/ambient temperature gaseous
methane. The injector patterns characterized were like (self)-
impinging doublet and circular coaxial.

Design criteria that provide for simultaneous attainment of high
performance and chamber compatibility are presented for both in-
jector types. Parametric data are presented that are applicable
for the design of circular coaxial and like-doublet injectors that
operate with design parameters similar to those employed in the work
reported herein. However, caution should be exercised when applying
these data to propellant combinations whose elements operate in
ranges considerably different from those employed in this study. To
obtain good quantitative design guidance in these cases, the rec-
ommended approach would be to apply the cold-flow propellant distri-
bution measurement techniques and combustion models developed and
verified under Contract NAS3-12051 directly to the propellant and
design requirements of interest.

To illustrate the use of the design guidelines presented herein for
gas/liquid injector design, design examples are presented for a
liquid oxygen/gaseous propane injector operating at a nominal cham-
ber pressure of 150 psia (MR = 2.9; sea level thrust = 5000 1bf).
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1.0 SUMMARY

This report presents injector design guidelines for gas/liquid propellant
systems. Design information is provided for simultaneous attainment of high
performance and chamber compatibility. The design criteria (guidelines) pre-
sented are based on data from a 30-month program of analysis, design, and ex-
periment conducted to relate injector/thrust chamber design parameters to
simultaneous attainment of high performance and component compatibility for a
FLOX/gaseous methane propulsion system (Ref.1l and 2). Design conditions were
for sea level thrust of 3000 pounds at a chamber pressure of 500 psia (MR =
5.25). The gas/liquid injector patterns characterized utilized like (self)-
impinging doublet and circular coaxial elements. Design criteria were estab-
lished (parametrically, based on combined cold-flow and hot-fire data) to allow
for subsequent extrapolation to other advanced gas/liquid propellant combina-
tions and operating conditions.

The effects of pertinent design and operating variables on mixing/atomization
for the like-doublet/coaxial element are discussed in detail herein.

Mixing for the like-doublet element is primarily a function of its geometric
design parameters (fan spacing, fan inclination angle, etc). Propellant momen-
tum ratio is of secondary importance. Considerable interelement mixing (i.e.,
a high-element density) is required to achieve high performance with the like-
doublet pattern. Atomization is primarily a function of the orifice size and
injection velocity. However, use of the injected gaseous propellant to aid in
atomization of the liquid propellant and combustion gas effects on '"'secondary
atomization'" also can be appreciable. Control of peripheral zone propellant
mass and mixture ratio distribution for chamber compatibility can be achieved
by spacing of the fuel and oxidizer fans and by proper alignment of these fans
in relation to the chamber wall,

Mixing for the coax1a1 element can be correlated as a function of a single
parameter, (p, V ) 2/MR- Vi, which is in turn a function of pertinent element de-
sign and operatlng variables. Interelement mixing is of less importance for
the coaxial element than for impinging jet elements. Atomization characteris-
tics of this element type can also be correlated as a function of element de-
sign and operating variables ((Vg-VL)/MR-VL). Control of peripheral zone mass
and mixture ratio distribution for chamber compatibility is most efficiently
attained with the coaxial element by means of boundary layer coolant.

Information is contained in this report to permit design of high-performance,
chamber-compatible gas/liquid like-doublet/circular coaxial injectors. This
information was developed on Contract NAS3-12051 (Space Storable Propellant
Performance Program). Design examples are provided to illustrate the use of
the data presented herein in the design of like-doublet and coaxial
(LOX/CzHg(g)) injectors.

The hot-fire and cold-flow data from Contract NAS3-12051 can be employed as
guidelines for design of high-performance chamber-compatible injectors for
other gas/liquid propellant combinations. However, caution should be exercised
when applying these data to propellant combinations whose elements operate in
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ranges considerably different than those employed in this study. To obbain good
quantitative design guidance in these cases, the recommended approach would be to
apply the cold-flow propellant distribution measurement techniquee and combug-

tion models developed and verified under Contract NAS3-12051 directly to the
propellant and design requirements of interest.



2.0 INTRODUCTION

The primary purpose of this report is to provide injector design guidelines for
gas/liquid propellant systems. Design information is provided for simultaneous
attainment of high performance and chamber compatibility. Prerequisites for
high performance are uniform propellant mixing and good atomization. Chamber
heat flux/erosion can be controlled by design techniques to ensure acceptable
peripheral zone propellant mass and mixture ratio distributions. The injector
patterns considered are like (self)-impinging doublet and circular coaxial.

Guidelines for design of high-performance, like-doublet, and circular coaxial
injectors are presented in Section 3.0 of this report under separate headings
(3.1--Like Doublet; 3.2--Coaxial). ‘Guidelines for injector element design to
achieve chamber compatibility with minimal performance losses due to propellant
mass and mixture ratio control (zoning) near the chamber wall are presented in
Section 4.0. In both cases, experimental results from both cold-flow mass and
mixture ratio distribution and hot-fire performance/heat flux measurements were
used as a basis for the recommended design guidelines.

Conclusions and recommendations about cold-flow injector modeling techniques,
and the application of the design guidelines presented in Sections 3.0 and 4.0
to propellant combinations whose elements operate in ranges considerably dif-
ferent than those upon which they were based, are presented in Section 5.0.

A design example illustrating the use of the design guidelines presented herein
is included as Section 6.0. Both injector types are considered.

3/4



3.0 PERFORMANCE GUIDELINES

Injector design criteria for simultaneous attainment of high propellant mixing
uniformity and good atomization are a prerequisite for high performance. Ex-
perimental results from both cold-flow mass and mixture ratio distribution and
hot-fire tests were used as a basis for the recommended design guidelines.
Guidelines for design of high performing, like-doublet, and coaxial elements
and/or injectors are presented in this section of the report under separate
headings. '

3.1 LIKE-DOUBLET ELEMENT PATTERN

Definition of the like-doublet element configuration, range of experimental
data, propellant mixing characteristics, propellant atomization characteris-
tics, and interelement considerations are presented herein for the like-doublet
element pattern.

3.1.1 Element Configuration

A schematic representation of a like-doublet element (element = matched pair of
fuel and oxidizer doublets) is presented in Fig.l . The geometric factors
affecting propellant distribution (mixing)/atomization for this element type
are illustrated in this figure. Mixing for the like-doublet element is primar-
ily a function of its geometric design parameters (fan spacing, fan inclination
angle, etc.). Propellant momentum ratio is of secondary importance.

3.1.2 Range of Experimental Data

Selection of zero fan spacing (S) and impingement angle (B) as optimum was based
on previous studies with liquid/liquid propellant systems (Ref. 3, 4, 6, and 7).
Specific design considerations for the full-scale injectors of Contract NAS3-
12051 for which these data were generated (i.e., number of elements required
for simultaneous attainment of high performance and control of injector-chamber
compatibility, available injector face area, orifice diameters required for
good atomization/reasonable injector pressure drops, etc.) limited the range of
usable intra-element spacing (~0.15 to 0.30 inch) and orifice diameters (~0.030
to 0.09 inch). Intra-element spacings of 0.15 and 0.20 inch were employed.
Selection of these values were based on previous experience with liquid/liquid
propellant systems. Those results indicate that, in general, optimization of
the intra-element spacing (Y) and fan inclination angle (o) are interrelated.
However, in the range of practical interest for Contract NAS3-12051, intraelement
spacing effects have been negligible. Fan inclination angle (o) and propel-
lant momentum ratio were, therefore, selected as the primary test variables.
Previous experience with liquid/liquid like-doublet elements indicated that
both of these variables influence mixing and lend themselves to optimization.

During single-element cold-flow mixing experiments, the fan inclination angle
(o) was varied in 15-degree increments from 0 to 30 degrees at a constant momen-
tum ratio (2/g) of 0.34. Propellant momentum ratio was varied from about 0.25
to 2.0 at a constant fan inclination angle of 15 degrees. Momentum ratio was
varied by varying mixture ratio/chamber pressure with a fixed-element configu-
ration and, alternatively, by successive enlargement of the gas orifice diameter
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at constant mixture ratio and chamber pressure. Most of the tests were conduc-
ted at a mixture ratio of approximately five. Two element configurations were
employed: one with dg = 0.037 inch, dg = 0.043 inch, and intra-element spacing
(Y) = 0.15 inch; the second with dg = 0.052 inch, Y = 0.20 inch, and d

0.055, 0.082, and 0.104 inch (O.SOSdg/ngO.QS). A jet impingement ang%e (1n-
cluded angle) of 60 degrees was used for all gas/liquid doublets, and free
stream and orifice L/D ratios of approximately 4 and 10, respectively, were em-
ployed on all of the like-doublet elements.

Table I presents the range of variables that were investigated during the high-
performance, like-doublet element (cold-flow) mixing tests. Optimum values for
each parameter (where applicable) are noted.

The cold-flow mixing experiments were conducted in a pressurized environment
to model the hot-fire gas/liquid flowfield of interest. Propellant simulants
were water (FLOX) and GN; (methane). A description of the pressurized gas/
liquid cold-flow mixing facility and its operating procedures are presented in
Ref. 1. To simulate operation at a given chamber pressure and mixture ratio,
hot-fire injected gas momentum flux, propellant momentum ratio, and mixture
ratio were matched.

3.1.3 Mixing Characteristics

Fan Incllnatlon Angle Effects. The effect of fan inclination angle on propel-
lant m1X1ng for high performance (zero fan spacing) like-doublet elements is
shown in Fig. 2. Element design and operating parameters are noted in the
figure. The effect of fan inclination angle on propellant mixing uniformity
for the subject element type (S = 0) is quite small. Ej and n.«, pijx for FLOX
(82.6% F,)/CHy are relatively independent of a(E; and nc* mix are defined
below). Because of the relative insensitivity o? E, to o’seen in these results,
selection of a specific fan inclination angle as optimum required further
analysis of the distribution data. '

The c* efficiency due to propellant mixing (nc* mix) is a function of the
mixing uniformity index (Em) propellant combination, and the overall injected
mixture ratio, Ne*, mix? is defined below:

Nex mix = the c* efficiency which would be obtained if propellant
g vaporization were entirely complete, and the only losses
were caused by nonuniform propellant mixing

n
MF.c*,
E i i

= A 1)
*
¢ theo



TABLE I. RANGE OF VARIABLES FOR HIGH-PERFORMANCE

LIKE-DOUBLET ELEMENT MIXING TESTS

Parameter
Fan Spacing, inches
Impingement Angle, degrees

Intra-element Spacing,
inches

Fan Inclination Angle,
degrees

Propellant Momentum Ratio
(liquid-to-gas)

Mixture Ratio

Liquid Orifice Diameter,
inches

Gas Orifice Diameter,
inches

Orifice Diameter Ratio

Symbol

S

8

Range
0
0

0.15 and 0.20
0, 15, and 30
0.25 to 2.0

5to 9

0.037 and 0.052

0.043, 0.055, 0.082

0.50 to 0.95

Optimum Value

0
0

0.15/0.20

15

0.7 to 1.5
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where

MFi = ‘the mass fraction in the individual stream being considered

c*.1 = theoretical c* corresponding to the mixture ratio of the
local stream

c*theo = theoretical c* corresponding to the overall mixture ratio

As shown by the above equation, nNgx pix is simply the sum of the mass weighted
c* contributions of each individual stream tube divided by the c* theoretically
attainable at the overall injected mixture ratio. '

The mixing quality can be expressed by an index, Ep, which defines the mass
weighted deviation of local mixture ratio from initially injected overall mix-
ture ratic. The index, Ep, was developed by Rupe (Ref. 8) and is defined below:

n

n —_
. (R-1.)
E = [1- (Z M, -(B-T{-fl-)- + 2 M, "R‘-‘i'l"'> 100 (2)

i -

E = mixing index
MF, = mass fraction in the stream tube
= ratio of total oxidizer mass to total oxidizer and fuel mass

T, = ratio of oxidizer mass to total oxidizer and fuel mass is an
individual stream tube for ri<R

?& = ratio of oxidizer mass to total oxidizer and fuel mass in an
individual stream tube for ri>R

The foregoing expression for the distribution index is not universal because

Ne*, mix 1S also functionally related to the propellant combination and overall
injected mixture ratio.

Examination of local values of the propellant mass flux distribution (for the
tests conducted to define fan inclination angle effects on mixing) provided
criteria for selection of a specific fan inclination angle as optimum. These
data indicated that, as the fan inclination angle was increased, the mass flux
plots became more nonuniform/unsymmetrical. Since all appear to yield nearly
the same mixing uniformity (Fig. 2 ), a low fan impingement angle would be
favored because of the more uniform overall maxx flux distribution. The effect
of the gas on the resultant distribution is quite pronounced at high fan incli-
nation angles. Propellant distribution is controlled by the gas at high fan
inclination angles, especially with low liquid-to-gas momentum ratios,

From injector design/fabrication considerations, a relatively low fan inclina-

tion angle is also favorable. A high fan inclination angle considerably in-
creases the design/drilling complexity of the injector. It also increases the

10



required area per element and decreases the number of elements that can be
placed in a fixed area. Previous experience with liquid/liquid propellant sys-
tems indicate that o = 0 is not optimum. For these reasons, a fan inclination
angle of 15 degrees was selected as optimum.

Propellant Momentum Ratio Effects. The effect of momentum ratio (liquid-to-
gas) on mixing for a zero fan spacing and 15-degree fan inclination angle,
like-doublet, single element is shown in Fig. 3 . Cold-flow test conditions
and element design parameters are noted in this figure. Increasing the momen-
tum ratio from 0.3 to 0.6 increases the mixing index E, by approximately 4.5%
(64.4 to 68.6). Ej is relatively independent of momentum ratio for momentum
ratios 20.6 over the range investigated (0.3 to 2.0).

A fan inclination angle of 15 degrees in conjunction with an oxidizer-to-fuel
momentum ratio of 0.7 to 1.5 was chosen as optimum. Hot-fire variation of pro-
pellant momentum ratio substantiated the result presented in Fig. 3 (Ref. 1).

During hot-fire and cold-flow experiments momentum ratio was varied by: (1)
throttling at constant mixture ratio, (2) varying mixture ratio at constant
chamber pressure, and (3) successive enlargement of the fuel/oxidizer orifice
diameters. These data suggested that over the range of experimental data con-
. tained herein, all methods for variation of momentum ratio produced equivalent
' parametric results.

3.1.4 Atomization Characteristics

Hot-fire mean drop sizes for liquid/liquid like-doublet elements can be esti-
mated using the following equation (Ref. 3):

D = 25,400 (3)
30 5 7%
Vj actual
2.64\/ D, K(p I(AV)
j ref
where
D30 = volume-mean-diameter of resulting droplets, microns
Dj = liquid orifice diameter, inches
V. = 1liquid injection velocity, ft/sec
j Lo o 1/4
K = 0.97 x (——) (-—-—)
p / n-heptane p / propellant
pactual
- = ratio of actual to reference gas density
ref (pref = 1.06 g/%)
AV =(Vg—Vj) = relative velocity difference between combustion gas and

liquid jet, ft/sec
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The effective combustion gas velocity (Vg) is peculiar to the propellant combi-
nation and, at present, no a priori method has been established for its pre-
diction. However, an empirical correlation expressing V, as a function of cham-
ber contraction ratio (g, = 2,3,.or 4) was found to be quite effective in cor-
relating the hot-fire data obtained under Contracts NAS3-11199 (Ref. 3) and
NAS3-12051 (Ref. 1). This expression is given below:

640
Vg = (4)
c

where

ec = chamber contraction ratio.

To predict the vaporization-limited c* efficiency for a system using existing
combustion models, the distribution of the droplets about the median Dz must
be known as well as Dzp. A "like-doublet drop size distribution' obtained from
Ref. 4 must be employed in the combustion model analysis. This information is
presented in Fig. 4 .

3.1.5 Interelement Considerations

Since single-element mixing levels are low (Ep=60 to 70), it was recognized
early in the program that substantial interelement mixing would be required in
a full-scale, like-doublet injector to achieve high performance. Consequently,
cold-flow mixing experiments were conducted to provide this information.

Element density/interaction effects on mixing for performance optimized like-
doublet elements are shown in Fig. 5 . Ej and cold-flow mixing c* efficiency
(for FLOX(82.6%)F;/CH,) are shown plotted as a function of element density in
this figure. As noteﬁ, high-element density is required for high mixing uni-
formity. This figure defines the element density required to achieve any
reasonable desired level of mixing.

The data in Fig. 5 can be employed in conjunction with Fig. 6 to determine
Ne*, mix for FLOX/CHy or FLOX/B,Hg propellant combinations. For propellant
combinations other than these, Eq. 1 can be employed in conjunction with a
multi-streamtube analysis to determine n.. . as a function of E_.

, Mmix m
Several general points should be made about the information presented in Fig. 6.
First, performance losses for a given level of mixing uniformity (E,) are sub-
stantially greater for one of the propellant combinations (FLOX/CH,) than for
the other. In general, performance losses due to nonuniform mixing are sub-
stantially greater for FLOX/light hydrocarbon systems than for most propellant
combinations. Secondly, for a given level of E;, performance losses for mix-
ture ratios 2 the optimum value are, in general, greater than those for
mixture ratios < the optimum value.
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3.2 COAXIAL ELEMENT PATTERN

Definition of the element configuration, range of experimental data, propellant
mixing characteristics, propellant atomization characteristics, and interele-
ment considerations are presented herein for the circular coaxial element
pattern.

3.2.1 Element Configuration

A schematic of the high-performance core element configuration which was char-
acterized in this study is presented in Fig. 7 . All the core elements were
configured with a diffuser section at the exit of the oxidizer post. The post
exit was chamfered at a nominal half-angle of 6 degrees, which is below the
value at which separation will occur.

3.2.2 Range of Experimental Data

Cold-flow experiments were conducted with circular coaxial elements (see Fig. 7)
over a range of design and operating variables which are directly applicable

to the FLOX/light hydrocarbon system. Table II presents the range of variables
investigated.

TABLE II. RANGE OF COLD-FLOW VARIABLES FOR
CIRCULAR COAXTAL ELEMENT

Parameter Symbol Range
Liquid Jet Diameter DL 0.070, 0.108, 0.136
(oxidizer), inch
Gas Gap Height (fuel), inch h 0.0055h <0.041
Oxidizer Post Recess, inch R 0<RS4 D,
Gas Velocity in Annulus \ 100SV_<630
(fuel), ft/sec g g
Diffused Liquid Velocity at VL 5< Vi <100
Post Tip (oxidizer), ft/sec
Gas Phase Density, lb/ft3 pg 0.3< pg <1.45
Injected Mixture Ratio MR 3<MRS7.5
Flow Per Element, 1lb/sec F 0.04SF<0.414

All cold-flow experiments (mixing and atomization) were conducted in pressurized
environments to model hot-fire gas-phase densities.

The independent efforts on mixing of .the above-listed variables can be found

in Ref. 2. However, to present the mixing data in a form convenient for design
purposes, the results were correlated as a function of a single parameter.
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R = Oxidizer R
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Core Element Configurations
(Nominal Dimensions)-

No. | D, (In.) D, (In.) Dg (In.)

1 0.136 0,146 0.182
2 0.108 0,122 0.166

3 0.070 0.080 0.136

Figure 7. Circular Coaxial Core Element Configurations
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3.2.3 Mixing Criteria

The cold-flow mixing results of the program were analyzed to determine if a
single parameter could be found to correlate the results in terms of pertinent
design and operating variables. The correlating parameter was formulated by
considering the dynamic and operating variables which could be expected to con-
trol the stripping of the liquid jet by the high-velocity gas annulug. The
variables included the kinetic energy of the high-velocity gas (p,V,“), an
operating variable proportional to the residence time of the liquid jet (V[),
the density of the gas phase (pg), and the ratio of liquid mass to gas mass
(MR). These variables were formulated into a single parameter by considering
the qualitative trends of the data. Flgure 8 presents a correlation of the
mixing data (Ep) with the parameter (pgV ) /(MR Vp). As indicated in the fig-
ure, the parameter provides a reasonab%e correlation of the mixing data.

Note that separate curves are necessary for different post recesses (R = 0,

R=1 D;). For almost all values of (p v ) /(MR V1), the recessed post gave
better m1x1ng, but the difference becomes small for values above about 6000
1bm2/ftS-sec.

The data of Fig. 8 can be employed in conjunction with Fig. 6 to determine
Nc*, mix for the FLOX/CHy(g) propellant combination. For propellant combina-
tions other than FLOX/CH4(g), Eq. 1 can be employed in conjunction with a multi-
streamtube analysis to determine Ngx pix as a function of Ey.

3.2.4 Atomization Characteristics

Cold-flow atomization tests analogous to the mixing experiments were conducted
to define the effects of the design and operating variables listed in Table IL
The independent effects of these parameters are tabulated in Ref. 2.

An attempt was made to correlate the atomization data of the program utilizing
the parameter (pgv )2/ (MR- +Vy) which correlated the mixing data (see Fig. 8.
However, no reasonable correlation was obtained. The most successful correla-
tion of the atomization data was obtained by replacing the numerator of the
mixing correlation parameter by a term proportional to the shear rate at the
gas-liquid interface (i.e., Vg~VL). In addition, it can be assumed that the
resultant mean drop size will be some fraction of the oxidizer jet diameter.
Thus, the resultant mean drop sizes were nondimensionalized by D;. Figure 9
presents the parameter D/Dj as a function of (V,-Vy)/V(-MR). As indicated in-
the figure, the parameters provide reasonable (gut certainly not precise) cor-
relations of the atomization data for both flush and recess oxidizer posts.

The data of Fig. 9 can be employed to predict the resulting mass median drop
size for an element which operates in a range similar to those employed in this
study.

To predict Ng« vap for a system D and the distribution of the droplets about

the median D are required as essential input to a computerized vaporization-
limited combustion model.
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Figure 10 presents normalized drop size distribution data from Ref. 2. Also
shown in the figure is the normalized Rosin-Rammler drop size distribution func-
tion (Ref. 9). Note the excellent agreement with the coaxial injector data for
values of D/D>1.0. Use of realistic drop size distribution functions for
D/D>1.0 in combustion model programs is critical since these drop size ranges
significantly influence the predicted ng« vap-

The mass median drop sizes, D, for a spray sample which conforms to the Rosin-
Rammler distribution functions may be converted to an equivalent volume mean
drop size by the equation:

Dy = 0.455D (5)

where

D30 = volume mean drop size

mass median drop size

3.2.5 Interelement Considerations

Since individual element mixing uniformity is quite high for the circular
coaxial element, element density effects on mixing are of minor importance for
this element type.
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4,0 INJECTOR/CHAMBER COMPATIBILITY GUIDELINES

Guidelines for injector element design to achieve chamber compatibility with
minimal performance losses due to propellant mass and mixture ratio control
(zoning) near the chamber wall are presented herein. Experimental resultg from
both cold-flow mass and mixture ratio distribution and hot-fire tests were used
as a basis for the recommended design guidelines. Cold-flow experimental re-
sults were used to define element design/operating parameter effects on the re-
sulting gas and liquid mass and mixture ratio distributions. Hot-fire experi-
mental results were employed to define (document) performance losses and chamber
heat flux reduction as a function of the pertinent design/operating parameters.
Like-doublet and coaxial injector design criteria are presented under separate
headings.

4,1 LIKE-DOUBLET PATTERN

Definition of the like-doublet element configurations considered for attainment
of chamber compatibility, the range of experimental data, mixing characteris-
tics of the elements tested, and hot-fire verification test results are
presented herein.

4.1.1 Element Configuration

Control of chamber wall compatibility with a like-doublet element is attained
primarily by intentionally displacing the fans' major axes (i.e., fan spacing
# 0) to provide a mixture ratio bias.

Cold-flow distribution (mixing) tests were conducted with single elements to
support design of full-scale hot-fire injectors. The hardware employed was

that previously utilized in the performance element studies. These elements
were designed to permit testing with fan spacings (S) of 0,0.125, and 0.250

inch,

4.1.2 Range of Experimental Data

The primary test variables were fan spacing (S), fan inclination angle (o), and
propellant (oxidizer/fuel) momentum ratio (M). Fan spacings of 0.125 and 0.250
inch were employed. Intra-element spacing (Y) was maintained constant at 0.200
inch. Fan impingement angle (B) was 0 degrees. The fan inclination angle was
varied from 0 to 30 degrees at a constant momentum ratio (£/g) of 0.34 and mo-
mentum ratio was varied from ~0.34 to 1.2 at a fan inclination angle of 15
degrees for both fan spacings. Fan 'inclination angles of 0, 15, and 30 degrees
were employed. The gas orifice diameter was varied to permit changing the pro-
pellant momentum ratio at constant mixture ratio. Mixture ratio was held con-
stant at ~5. The momentum ratio (oxidizer-to-fuel) was varied over a wide range
(0.34 to 1.22) by use of a 0.052-inch liquid orifice diameter with gas orifice
diameters of 0.055, 0.082, and 0.104 inch. The oxidizer represents the liquid
and fuel represents the gas in the discussion that follows,
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Data from this test effort were utilized to support design of peripheral element
configurations for evaluation in full-scale injectors so that performance losses
could be minimized while providing a fuel-rich zone near the chamber wall to
reduce chamber heat flux.

4.1.3 Mixing Characteristics

The first topic considered below is the effect of design/operating parameters on
performance as influenced by propellant mixing. The fuel (gas) and oxidizer
(liquid) flow distribution of single elements, again as a function of design/
operating parameters, are then described and flow patterns which would be most
desirable for a peripheral injector element are selected.

Performance. Figure 1l presents the results of the experiments to determine the
effects of fan inclination on mixing for a momentum ratio (%/g) of 0.34 and fan
spacings equal to 0.125 and 0.250 inch. As indicated by Fig. 11, mixing (Ep) is
near optimum for a fan inclination angle (o) of approximately 15 degrees for
both spacings. As expected, mixing was better with the 0.125-inch spacing than
with 0.250 inch between fans.

To determine the effects of propellant momentum ratio upon mixing, the momentum
ratio (Myx/Mg) of the elements (S = 0.125 and 0.250 inch) was varied from 0,34
to 1.22 for a constant fan inclination angle of 15 degrees. The results of
these experiments are shown in Fig. 12, Mixing levels show a slight decline
with increasing My/M; for the 0.250-inch spacing configuration for momentum
ratios in excess of about 0.8. For the 0.125-inch spacing configuration, mixing
levels were found to increase up to Mg,/Mg = 0.7 and, above that value, were
found to be nearly constant.

The effect of fan inclination angle on propellant mixing for the performance
(S = 0) and chamber-compatible elements are compared in Fig.13 .

Mass and Mixture Ratio Distribution. The same cold-flow data as were used to
determine the values of Ep just described were examined to determine potential
wall mass and mixture ratio distributions. From a performance standpoint (i.e.,
maximum E;) an optimum design for both the 0.250- and 0.125-inch fan spacing
configurations would incorporate a fan inclination angle of 15 degrees and a
momentum ratio of approximately 0.75. However, as will be discussed in subse-
quent paragraphs, the optimum performance configurations do not necessarily
yield optimum wall mass and mixture ratio distributions.

Figures 14 and 15 present fuel (g) and oxidizer (%) mass flux data for the
0.125- and 0.250-inch spacing configurations, respectively, for a fan inclina-
tion angle of 15 degrees and a momentum ratio of approximately 0.75. The
scales of the ordinants (liquid and gas mass fluxes) are normalized by a factor
of 5; consequently, if the oxidizer value (solid line) and the fuel values
(dashed lines) coincide at a point, then the mixture ratio at that point is
equal to 5. If the dashed line (fuel) lies about the solid line (oxidizer),
then the local mixture ratio is less than 5 (i.e., "low" mixture ratio) and
vice versa. The injected mixture ratio was 5.
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Also illustrated on each plot is the angular orientation of that profile with
respect to the element orientation.

Examination of Fig. 14 for the 0.125-inch configuration (S = 0.125 inch) with
o = 15 degrees and Mox/Mf = 0.775, shows a relatively low mixture ratio (MR<5)
region exists in adjacent sectors 8, 1, and 2 so this would be the most desir-
able zone to have near the wall (for this configuration). Examination of

Fig. 15, obtained from a 0.250-inch spacing configuration with a = 15 degrees,
Mox/Mg = 0.775 shows that a low mixture ratio periphery (MR<5) would be possi-
ble if the wall were to be placed adjacent to sectors 1 and 2. However, exami-
nation of all the data with M, ,/Mg = 0.34 (S = 0.125, 0.250 inch, o = 0, 15,

30 degrees) revealed that the configuration of o = 0 degrees and S = 0.250 inch
resulted in the lowest potential wall mixture ratio. These data are shown in
Fig. 16. Note that a strong, low mixture ratio bias would be obtained if the
chamber wall were placed adjacent to either section 1, 8, or 7. The absolute
values of gas mass flux in these sectors are substantially higher than the best
sectors shown in Fig., 14 and 15 (o = 15 degrees, Myy /Mg = 0.775, S = 1.25 and
0.250 inch).

Selection of o = 0 degrees, S = 0.250 inch instead of o = 15 degrees, S = 0.250
inch would result in a maximum loss (assuming no interelement mixing effect) in
mixing performance (corresponding to the decrease in E;) of approximately 3 per-
cent. However, considering the mass and mixture ratio profiles of the o = 0
degrees, S = 0.250-inch case as opposed to o = 15 degrees, S = 0.125 or 0.250
inch, the former is clearly superior from the standpoint of providing wall mix-
ture ratio bias., ‘

Examination of the mass and mixture ratio profiles for the tests to define the
effects of propellant momentum revealed (E; data shown in Fig. 12 that the pro-
pellant momentum ratio did not have a significant effect on the wall mass and
mixture ratio distributions. Thus, a value of 0.75 for the element momentum
ratio should provide near-optimum performance (Ep) while providing a '"low"
mixture ratio wall region.

Based on these cold-flow data, the following element design parameters are rec-
ommended for 0.125 and 0.250-inch fan spacing injector configurations: fan
spacing, S = 0.125 inch; fan impingement angle, B = 0 degrees; intra-element
spacing, Y = 0.20 inch; fan inclination angle, o = 15 degrees; momentum ratio
(ox/fuel) = 0.75; fan spacing, S = 0.250 inch; fan impingement angle, B = 0
degrees, intra-element spacing, Y = 0.20 inch; fan inclination angle, a = 0
degrees; momentum ratio (o/f) = 0.75. Based on the data in Fig. 14 and 16, the
elements should be aligned with sectors 1 (S = 0.125 inch) and 8 (S = 0.250
inch) adjacent to the chamber wall.

[

Basically, the 0.250-inch fan spacing design represents the configuration indi-
cated by cold-flow data to offer the best chamber compatibility, though at some
cost in performance. The recommended 0.125-inch fan spacing design concept re-
sults from a ccmpromise between mixture ratio control and performance potential
in which performance should remain relatively high, but wall protection is still
provided. Only the 0.250-inch fan spacing design was fabricated and hot-fire
tested.
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4.1.4 Chamber Heat Transfer Characteristics

The effects of element fan spacing, orientation of the element with respect to
the chamber wall, and operating conditions (chamber pressure, mixture ratio, and
peripheral zone mass flow) on chamber wall heat flux are presented here for the
like-doublet element pattern.

Three full-scale injectors were hot-fire evaluated. One (injector A) contained
37 high-performance (S = 0) elements. The fuel doublets were on the chamber
wall side of the element and the spray fans were essentially perpendicular to
the chamber wall. The second (injector C) contained 35 chamber-compatible ele-
ments (S = 0.250 inch; o = 0). The fuel doublets were again on the chamber wall
side of the element. However, in this case, the elements had their fans more
nearly parallel to the chamber wall. Based on the single-element cold-flow
data, the peripheral zone elements were turned slightly (~20 degrees) from
parallel to the wall to provide the lowest possible mixture ratio region adja-
cent to the wall. The third injector (injector D) was an optimized configura-
tion with separately manifolded '"high-performance' core and ''chamber-
compatible" peripheral zones. The core elements were similar to those of the

A injector, while the peripheral zone elements were similar to those of the C
injector. The elements were 3/4-scale reductions of those in the A/C injectors.
Therefore, fan spacing for the peripheral elements was 3/16 inch. This injec-
tor contained 63 elements arranged in four rings. The inner three rings (42
elements) constituted the core region and the outer ring (21 elements) was the
peripheral zone.

Performance of the three injectors at design operating conditions (P. = 500
psia; MR = 5.25) was:

o®

n

Injector Configuration c¥,

96.5
92.5
97.5

Schematic representations of the A, C, and D injectors are presented in Fig. 17,
18, and 19, respectively.

Chamber heat transfer characteristics for the high-performance (A) and chamber-
compatible (C) injectors are presented in Fig.20 and 21. The effect of injec-
tor design and chamber pressure on chamber heat flux is presented in Fig. 20,
Chamber heat flux is shown plotted as a function of the axial distance from the
injector for both injectors. The chamber contour (L* = 40 in.; €. = 3) also

is illustrated. Results are presented for chamber pressures of 500 and 250 psia
at a mixture ratio of 5.5. Nominal design operating conditions are a chamber
pressure of 500 psia and overall mixture ratio of 5.25. The effect of injector
design on chamber heat flux is readily apparent. In general, local heat fluxes
for the C injector (fan spacing = 1/4 inch), which was designed for chamber com-
patibility, are approximately half those of the high-performance A injector

(fan spacing = 0) throughout the chamber. Even in the nozzle throat region,
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heat flux with the C injector is only about 70 percent of that with the A injec-
tor at similar operating conditions. Chamber heat fluxes for the two injector
configurations appear to increase only slightly with chamber pressure variations
between 250 and 500 psia. In the nozzle region, heat flux is proportional to
chamber pressure to approximately the 0.8 power for each injector, as would be
predicted from standard heat transfer equations (pipe flow, turbulent boundary
layer regime). '

The effect of mixture ratio on chamber heat transfer characteristics is shown in
Fig. 21 for the C injector configuration. Local heat flux is plotted as a func-
tion of axial distance from the injector for three tests conducted at a chamber
pressure of 500 psia and mixture ratios of 3.3, 5.5, and 8.4. As noted, cham-
ber and nozzle heat flux increases significantly with increasing mixture ratio.

The effects of peripheral zone element design, mixture ratio, and percent mass
flow to the peripheral zone on the average chamber heat flux is summarized in
Fig. 22 for all three injectors. These data show that chamber wall heat flux
can be significantly reduced by proper design of the peripheral elements to con-
trol the peripheral zone mixture ratio and/or the percentage of mass flow to the
periphery.

4,2 COAXIAL CONFIGURATION
Definition of the coaxial element configurations considered for chamber compati-
bility, the range of supporting experimental data, mixing characteristics of the

elements tested, and hot-fire verification results are presented herein.

4.2.1 Element Configurations

In this study, two coaxial-type elements were characterized for chamber wall
compatibility. Schematics of the two configurations along with their respective
dimensions are shown in Fig. 23,

A baseline configuration was chosen which consisted of a ''core''-type element
with an adjacent boundary layer coolant (BLC) hole. The second peripheral ele-
ment configuration consisted of the scarfed post with oxidizer jet swirl. The
scarfed post with swirl element was designed with a nominal post scarf angle
of 22-1/2 degrees, as shown in Fig. 23. The oxidizer jet was swirled by em-
ploying an in-line helical with a nominal helix angle of 45 degrees.

4.2.2 Range of Experimental Data

The percent of fuel used as film coolant was varied from 0 to 10 percenf%using
the BLC concept. Test conditions simulated were an overall mixture ratio of
5.25 and chamber pressure of 500 psia. Both single-element hot-fire and cold-
flow tests were conducted.

4,2.3 MixingﬁCharacteristics

Performance Characteristics. Mixing experiments conducted with the two configu-
rations shown in Fig. 24 indicated that mixing performance of the two are nearly

*Defined as percent of total fuel flow.
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equivalent. Figure 24 presents mixing level, E;, as a function of distance from
the injector face for the two configurations.

Extensive atomization data for the two configurations are not available. For
the operating conditions shown in Fig. 24 , the respective mass median drop sizes
are 580 and 590 microns for the BLC and scarfed post configurations.

Mass Flux Profiles. Since chamber wall heat flux is primarily a function of
wall zone mass and mixture ratio, the results of the mixing tests provide in-
formation in regard to the mass flow characteristics of the elements. Figure 25
presents 'mormalized" mass flux profiles for both configurations. Note that the
mass flux is 'mormalized" only with respect to total propellant flowrate and not
with respect to area.

Plotting the "normalized" mass fluxes allows for a visual determination of the
uniformity of the spray field. That is, if local values for the 'mormalized"
liquid and gas mass flux coincide then, at that point, the local mixture ratio
is equal to injected mixture ratio. If the liquid values are higher than the
gas, then the local mixture ratio is greater than the injected mixture ratio,
and vice versa. For complete mixing (i-.e., Ep = 100%) the curves would coincide
both spacially and in magnitude.

Figure 25presents normalized mass flux data for both the scarfed post and BLC
configurations with wgpc = 0.006 1lbm/sec. The data are plotted for the hypo-
thetical wall region of interest (Sectors 2 and 3). Examination of the cold-
flow data shows that both configurations possess characteristics which could
provide enhanced injector/chamber compatibility. The flux profiles for the
scarfed post with swirl show that the element displaces mass away from the wall
region, but the local wall mixture ratios are higher than the injected mixture
ratios, That is, near the wall, local values of '"normalized" liquid mass flux
are higher than gas mass flux,

The flux profiles for the BLC tests show that liquid distribution is not affec-
ted by the showerhead BLC flow. However, the displacement of the gas distribu-
tion from the centerline of the element is evident. The resulting BLC element
flow field is characterized by a low wall region mixture ratio, but with rela-
tively small increase in mass flux near the wall,

The relative merits of each configuration as a peripheral element were investi-
gated with single-element hot firings. These data showed the relative merits of
low wall mixture ratio versus low wall mass flux.

4.2.4 Chamber Heat Transfer Characteristics

Chamber Wall Heat Flux - Single Element. Heat flux data for the scarfed post
with swirl and the BLC peripheral element data are shown together in Fig. 26 ,
Even at the 6.8% BLC level, wall heat flux levels are lower {~10%) than those
obtained with the scarfed post with swirl element. This is true in spite of the
fact that the performance levels are significantly higher with the BLC
configuration.
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Figure 26. Comparison of Scarfed Post and BLC Heat Flux Levels
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The results of the single-element hot-firing data can be physically interpreted
in light of the mass flux profiles from the cold-flow experiments. Figure 25
presented (normalized) cold-flow mass flux data for the scarfed post and BLC
elements. The flux profiles for the scarfed post element show that the element
displaces mass from the wall region but the local wall mixture ratios are higher
than the injected mixture ratios. The individual gas and liquid flux profiles
for the BLC tests show that liquid distribution is not affected by the shower-
head BLC flow. However, the displacement of the gas distribution from the
centerline of the element is evident. The resulting characteristics of the BLC
flow field include a low wall region mixture ratio, but no reduction in mass
fluxes near the wall. From the results of hot-firing experiments, it appears
that the low mixture ratios produced by the BLC element were more effective in
reducing wall heat fluxes than were.the reduced wall mass flux generated by the
scarfed post with swirl element.

The results (see Fig.26 ) from the single-element hot-firing tests showed that
reducing chamber wall zone mixture ratio was more effective in reducing heat
flux levels than reducing wall zone mass flux levels. Thus, local wall zone
mixture ratios of the peripheral and core elements were correlated with measured
wall heat flux rates. Local wall zone mixture rates for the peripheral elements
were determined by integrating the mass flux profiles shown in Fig. 25. Only
the profiles from Sectors 2 and 3 were integrated since those regions comprise
the wall region in the single-element chamber. For the ''core' element, wall
zone mixture ratio was taken as the injected mixture ratio because, at the test
conditions, mixing levels were approximately 98%.

Figure 27 presents the results of the correlation analysis plotted as average
chamber wall heat flux as a function of wall zone mixture ratio. Average cham-
ber wall heat fluxes were determined by integrating the heat flux profiles from
the injector to the start of nozzle convergence. The average chamber wall heat
flux was found to decrease with wall zone mixture ratio. In addition, Fig. 27
shows that employing '"peripheral' elements instead of ''core" elements in the
wall zone of an injector can result in significant reductions in chamber heat
flux levels.

Chamber Wall Heat Flux - Full-Scale Injector. Local values of chamber wall heat
flux were determined with the full-scale (3000 1bf) coaxial injector of Ref. 2.
Figure 28 presents typical chamber heat flux profiles which show the effect of
BLC flow. Also shown in Fig. 28 are injector face heat flux levels which were
determined during the parametric tests. The data were reduced at a time (=2.7
seconds in 3-second test) during the run where the inner chamber wall temperature
was calculated (based on measured outer wall temperatures) to be approximately
1000 F. Thus, the chamber wall heat data are comparable with regeneratively
cooled chamber data with wall temperatures on the order of 1000 F. As expected,
the BLC flow was found to be most effective near the injector end of the cham-
ber. Heat flux levels in the convergent section and nozzle throat were found to
be independent of percentage of BLC flow, Note, however, that increasing the
percentage of BLC flow from 0 to 9% resulted in a 50% reduction in average cham-
ber wall heat flux. All experiments were conducted in a L* = 40 inches,

€, 3:1 chamber.
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Correlation of Full-Scale/Single-Element Heat Flux Data. The heat flux data of
the full-scale firings and single-element BLC element hot-firing were compared
to determine the relationship between single-element and full-scale chamber heat
flux characteristics. Both test series were conducted in L* = 40 inches,

€c = 3:1 chambers. The chamber heat flux levels were averaged by integrating
the local heat fluxes from the injector face to the start of nozzle convergence.
Figure 29 presents the results of the analysis for various levels of BLC flow-
rate. Based on the data of Fig. 29 it appears that single-element hot-fire data
can be employed to predict full-scale chamber heat flux data in the chamber
region upstream of the start of nozzle convergence.
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5.0 CONCLUDING REMARKS
5.1 COLD-FLOW INJECTOR MODELING TECHNIQUES

The gas/liquid mixing facility/techniques that were developed on this program
and Contract NAS3-12001 (Ref. 5) have been shown to be a powerful tool for the
rational design of injectors. In particular, the pressurized single-element ex-
periments provided valuable design criteria not only for mixing levels but also
resulting mass flow and mixture ratio distributions (chamber compatibility).
Cold-flow data were employed to define element design criteria for both high-
performance and control of chamber wall heat flux levels.

Perhaps the most valuable gain from the celd-flow testing is the physical in-
sight into how the gas and liquid flow patterns are influenced by changes in
element design and operating conditions. Often very small dimensional changes
in the design can substantially alter the mass flux and mixture ratio patterns.
An application of this information was the revelation that a slight rotation
(~20 degrees) of the like-doublet peripheral injector elements with respect to
the chamber wall resulted in placement of the lowest mixture ratio (and, there-
fore, coolest) gas streams along the chamber wall (Ref. 1). Additionally, ex-
periments with coaxial peripheral elements showed that the cold-flow techniques
can provide detailed flow field information which result from subtle change in
element design. As an example, the addition of a small BLC hole adjacent to
coaxial element can alter significantly the resulting wall zone gas flow field
(Ref. 2). :

5.2 APPLICATION OF RESULTS TO OTHER PROPELLANT SYSTEMS

The hot-fire and cold-flow data from this study can be employed as guidelines
for design of high-performance, chamber-compatible injectors for other gas/
liquid propellant combinations. For like-doublet element injectors, propel-
lant mixing and control of chamber heat flux levels (propellant distribution)
has been shown to be primarily a function of geometric element design parameters
(fan spacing, fan inclination angle, etc.). The oxidizer/fuel injected momentum
ratio influenced performance to a lesser degree over the range investigated
(0.25 to 2). However, caution should be exercised when applying these data to
propellant combinations whose elements operate in ranges considerably different
than those employed in this study. To obtain good quantitative design guidance,
the recommended approach would be to apply the cold-flow propellant distribution
measurement techniques and combustion models developed and verified under this
program directly to the propellant and design requirements of interest.

The correlated cold-flow data for circular coaxial elements, presented in

Fig. 8 and 9, can be employed to determine element mixing and atomization
levels for other gas/liquid propellant combinations (i.e., LOX/GHp, LOX/propane,
etc.). In addition, the correlation of chamber wall heat flux versus chamber
wall mixture ratio (Fig. 27) can be employed as a guide in designing elements
for enhanced injector/chamber compatibility.

As noted previously, caution must be exercised when applying these data to pro-
pellant combinations whose coaxial elements will operate in ranges considerably
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different than those employed in this study. Specifically, coaxial elements
employing LOX/GHy normally operate with significantly higher gas gap velocities
= 2000 to 3000 ft/sec) than those using methane (V,=~300 to 500 ft/sec). In
§1t10n LOX/GHy elements generally have larger gas gap heights than those re-
ported herein (h=0.018 inch). Cold-flow studies currently underway at
Rocketdyne with LOX/GH; coaxial elements indicate that the cold-flow data gen-
erated in this study may not be directly applicable to LOX/GHp. However, injec-
tor designers concerned with propellants which operate with similar injection

characteristics (i.e., LOX/propane) should be able to utilize the results of
this study directly.
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6.0 DESIGN EXAMPLE

To illustrate the use of the data presented in this report for gas/liquid in-
jector design, design examples are presented herein. High-performance, chamber-
compatible circular coaxial and like-doublet injector designs are formulated.
Detailed (specific) designs are presented for high performance. The basic ap-
proach to be used to attain chamber compatibility is illustrated.

6.1 DESIGN APPROACH

Rational design of rocket engine components using fundamental engineering princ-
iples requires a basic understanding of combustion and its relationship to the
physical processes (propellant mixing/atomization) that control it.

Consequently, prior to applying experimentally developed mixing/atomization de-
sign correlations to the design of an injector-thrust chamber combination, ana-
lytical studies should be conducted to define the effects of propellant atomiz-
ation and mixing on performance as a function of chamber geometry/operating
conditions. Results of these analytical studies will provide a definition of
injector and thrust chamber design requirements. These performance calculations
can be made using vaporization rate-limited and distribution-limited computer
programs similar to those employed at Rocketdyne (Ref. 1 through 5).

Once the overall mixing and drop size requirements have been established the
injector may be designed using existing mixing/atomization correlations. Design
correlations exist for both high performance (i.e., injector core elements) and
chamber-compatible (i.e., peripheral zone) elements. Caution should be exer-
cised when applying existing correlations to propellant combinations whose ele-
ments operate in ranges considerably different than those upon which the corre-
lation was developed. To obtain good quantitative design guidance in these
cases, the recommended approach would be to apply cold-flow propellant mixing/
atomization techniques developed and verified on Contract NAS3-12051 directly to
the propellants and design requirements of interest.

Design/operating parameters, and mixing and atomization requirements, are de-
fined in Section 6.2. Subsequently, high-performance like-doublet and coaxial
injector design concepts are generated (Sections 6.3 and 6.4). The approach to
be used to attain chamber compatibility is presented in Section 6.5.

6.2 DEFINITION OF DESIGN/OPERATING PARAMETERS
For this example, the liquid oxygen/gaseous propane propellant combination was
selected. Nominal operating parameters are listed in Table III. In addition,

reasonably low chamber heat fluxes are desired.

Dimensions of the thrust chamber were established with the aid of the design/
operating parameters in Table III. The chamber diameter is 7.90 inches.
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TABLE III. DESIGN/OPERATING PARAMETERS

Propellants Liquid oxygen (LOX)/gaseous
propane (C3H8)

Chamber Pressure, psia 150

Total Propellant Flowrate, 13.45

1bm/sec '

Injected Mixture Ratio 2.9

Fuel Density, lbm/ft3 1.16

Oxidizer Temperature, R 150

Oxidizer Density, 1bm/ft> 71

Fuel Temperature, R 530

Thrust (sea level), pounds 5000

Chamber Contraction Ratio 2.7:1

Performance Level Target (nc*), 96

percent

Chamber Length, inches 10

6.2.1 Definition of Mixing and Atomization Requirements

Mixing Requirements. Equation 1 was employed in conjunction with a distribution-
limited, multi-streamtube analysis to determine the effect of mixing on perform-
ance for LOX/CzHg as a function of Ep. Results of this analysis are presented
in Fig. 30, This figure defines the level of mixing (Ep) required for any rea-

sonable N« An E; of 94 is required for an Ne* mix of 99,
»

,mix’
Atomization Requirements. A vaporization rate-limited combustion model was em-
ployed to determine the effect of propellant drop size on performance. Results
of this analysis are presented in Fig. 31, As noted in this figure, a mass

median drop size of approximately 100 microns is required for an Nex va of 99
in the 10-inch chamber. »Vap

To attain the required performance goal (96-percent c* efficiency), a mixing in-
dex (Ep) greater than 90 in conjunction with propellant drop sizes or the order
of 100 microns will be required.

6.3 LIKE-DOUBLET INJECTOR DESIGN

A simplified flow schematic for the like-doublet injector optimization process
is presented in Fig. 32. The upper portion of this figure is common for both
injector types. The design procedure for a like-doublet injector is illustrated
in the bottom portion of Fig. 32, Specific injector design details for the
like-doublet injector are presented below.
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6.2.1 Basic Element Design

Based on the information in Table I, the basic (high performance) element will
have the following.design parameters:

Fan Spacing (§) =
Impingement Angle (B) =
Intra-element Spacing (Y)
Fan Inclination Angle (a)

0.15 inch
15 degrees

o

In addition, the injector should be designed employing the following guidelines:

1. Element placement on the face of the injector should provide essenti-
ally uniform propellant mass flux distribution.

2. Oxidizer manifold/feeder passages should be sized so that velocities
are less than 10 ft/sec at the design operating conditions and passage
entrances should be chamfered or rounded as much as possible to avoid
sharp edges. Fuel manifold/feeder velocities should be ~80 ft/sec at
the design operating conditions.

3. Oxidizer and fuel orifice L/D's should be ~10. Free stream L/D's for
both oxidizer and fuel should be between 3 and 5.

4. The impingement point of the like streams should be ~0.20 inch from
the injector face (the included impingement angle of all liquid/gas
doublet streams should be 60 degrees).

As noted in Fig. 5, an element density of ~5.5 elements/sq in. of injector face
area is required for an Ej of 92.5. This would result in an ngx pix of 98.5
for LOX/CsHg (Fig. 30). Since the chamber diameter is 7.90 inches, approxi-
mately 270 elements are required to obtain this desired mixing level.

The oxidizer orifice size should be selected, using Eq. 3 and 4, to provide good
atomization. The fuel orifice size should be selected to keep the propellant
momentum ratio (%/g) between 0.7 and 1.5, and d /d between 0.5 and 1.0. This
is within the range of the experimental data

Oxidizer drop size is shown plotted as a function of orifice diameter for an in-
jector AP of 100 psi (Vox = 91 ft/sec) in Fig. 33. The oxidizer orifice diam-
eter is plotted as a function of the number of elements for several injection
pressure drops in Fig. 34. Examination of these figures reveals that use of an
oxidizer orifice diemater of 0.0225 -inch with an oxidizer injection AP of 100
psi will result in an oxidizer D30 of ~70 microns (D ¥ 107 microns).

Vaporization c* efficiency will be 98.5 (Fig. 31). Overall performance would be

n X n = 98,5 x 98.5 = 97 percent,

c*,mix c*,vap

A fuel orifice diameter of 0.038 inch (V_.¥ 350 ft/sec) should be employed. This
will result in a momentum ratio (£/g) ong 75 (df/dg T 0.61).

Performance could be increased by increasing the element density (i.e., increas-

ing the number of elements) with a resulting increase in Em/nc*,mix° This would
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also result in a smaller oxidizer orifice diameter (AP held constant) and some-
what lower D. However, it would make the injector more complex to fabricate.

6.4 COAXIAL INJECTOR DESIGN

A simplified flow schematic for the coaxial injector optimization process is
presented in Fig. 35, The upper position of this figure was discussed in Sec-
tion 6.3, and is common to both injector types. The design procedure for the
coaxial injector is illustrated in the bottom portion of the figure. Specific
injector design details for a high-performance coaxial injector are presented
below.

6.4.1 Injector Face Pattern

To promote intra-element mixing effects, it is desirable to configure the in-
jector with a relatively high element density. A design layout for this par-
ticular application shows that 148 elements may be conveniently arranged in the
7.90-diameter injector face area (see Fig. 36). Thus, the thrust level of each
element is equal to 5000/148, or 34 pounds per element. Since this thrust level
is similar to that employed in the present study, the cold-flow data can be em-
ployed with confidence to predict mixing and vaporization-limited performance.

FACE PATTERN
148 ELEMENTS

Figure 36. Coaxial Injector Face Pattern

6.4.2 Element Design

MixingﬁPerformance° Based on the correlated single-element cold-flow data of
this study optimum m1x1ng was obtained with an element recess of gproximately
1x D& and with (p ' ) 2/MR- v approximately equal to 2000 1bm2/ft> sec (see

Fig. 8 ).

That value of (p ' ) /(MR Vp) yields an E; of approximately 95% which is equiv-
alent to Ne* mix 96 for tke LOX/CzHg system. For the design conditions shown
in Table III, tﬁls yields the following for the fuel/oxidizer velocity ratio:

o, V,)?

g 8 .
Y, 2000
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Optimization (Performance) Process

63



Or‘

vg2

£ . 4310
Vi

V_ =65.6 /W_
g L

At the design mixture ratio of 2.9, the total oxidizer and fuel flowrates are
10.00 and 3.45 1bm/sec, respectively. Thus, the respective flowrates per ele-

ment are:

w__ = 0.0675 1bm/sec
ox

quel = 0.0233 1bm/sec

The correlated cold-flow data (Fig. 8 and 9 ) were generated with liquid injec-
tion velocities on the order of 20ft/sec. Examination of reasonable values for
the choice of a liquid jet diameter shows that D; = 0.100 inch yields a 11qu1d
injection velocity of 17.6 ft/sec. Thus, for optimum mixing, the gaseous in-
jection velocity is:

vg = 65.6 vVZ‘: 65.6 (4.25)
V_ = 276 ft/sec
&

For a D; = 0.100 inch element, a post wall thickness of 0.020 inch should not
present fabrication problems. Thus, the OD of the LOX post and the ID of the
fuel annulus is 0.140 inch. Based on the requirement of V_ = 276 ft/sec, cal-
culation of the fuel annulus area yields: &

0.0233 -4

2
F = TCTe ey = 0-729 x 10

A ft

With a post ID equal to 0,140 inch, the required fuel annulus OD is 0.182 inch.
Thus, the gas gap height is equal to 0.021 inch. A sketch of this element is
shown in Fig.37.

OXIDIZER / — —
0.100 DIAMETER:] \Qb\ £,0,182 DIAMETER
DETAIL OF TYPICAL —0. 140 DIAMETER
ELEMENT —0.110 DIAMETER

Figure 37. Coaxial Element Configuration
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Atomization Performance. At the design.conditions, calculations of the predicted
mass median drop size are obtained from Fig. 9 . For the element shown in Fig,
37 , which operates at the design conditions:

Vg = VL) 276 - 17.6 o

VMR T17.6(2.9)

5.05

Based on the correlated (Fig. 9 ) atomization data, the above value of (V_ - VL)/
(MR-VL) yields a D/Dy, value of approximately 0.15. With Dj = 0.100 inch,ga
predicted mass median drop size (wax)of 380 microns is obtained.

To predict a mean LOX drop size for the hot-fire system, the mean drop size
data (Dy,x) of Fig. 9 must be corrected for the difference in physical prop-
erties o% Shell-270 wax and LOX.

The values employed for the respective physical properties of LOX and Shell-270
wax are shown in Table IV.

TABLE IV. PHYSICAL PROPERTIES OF LOX AND WAX

Property LOX* Shell-270 Wax**
Viscosity (u), centipoise 0.23 4.0
Surface Tension (o), dyne/cm 14,97 17.5
Density (p), lbm/ft3 71.1 47.1

*Data taken from NASA SP-3037, "Handling and Use of Fluorine-
Oxygen Mixtures in Rocket Systems"

**Dannenbrink, R. W., Shell Chemical Co., Private Communication,
Telecon to L. Zajac, Advanced Programs, Rocketdyne

As indicated, Shell-270 wax simulates reasonably well the surface tension of
LOX but differs in density and absolute viscosity.

The correction factor which was employed was based on the work of Ingebo (Ref.
10y, i.e.,

|

==l

- uLOX oLOX pwax 174 =
LOX uwax owax pLOX wax
= 0.425 D___ = 162 microns
wax :
For D = 162 microns, the results of combustion model show that Ne*,vap 1S approx-
imately 94% for a chamber length of 10 inches. Thus, the overall performance of
the injector is predicted to be:

Nex = 99 x 94 = 93%
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Optimization of Performance. The foregoing example clearly points out that de-
signing an element for optimum mixing (Ep = 95%) does not necessarily mean small
vaporization losses will be present. Thus, for a particular design condition,
tradeoff studies must be made with respect to element geometry as well as ele-
ment operating conditions.

In this particular example, the mean drop size can be decreased by increasing
the gas gap velocity V; (i.e., (Vg -V )/MR-VL) increases) which can be accomp-
lished by decreasing the gas gap, h. owever, as V, is increased, (p, V )2/
(MR-Vy) also increases to values greater than 2000. Consequently, thg p%edicted
single-element Ej decreases with an attendant decrease in n.x pix. The need for
a tradeoff study to optimize overall performance, News is obvious.

To obtain an Ne* va of 98.5% a LOX drop size of 110 microns (D) is required
(Fig. 31). Thls’co?responds to a wax D of 259 microns or D/Dj, of approximately
0.1. Consequently, {(V, - VL)/VL-MR should be ~11 (Fig. 9 ). This will require
a V, of ~590 ft/sec.. %he corresponding ID of the gas annulus will be 0.160
inck (h = 0.010 inch).

For this .configuration, (p_ V )Z/MR-VL ¥ 9200, and E, ¥ 89 (Fig. 8 ), which
corresponds to an N.x pix r 87.5 (Fig. 30). Thus, overall performance = 97.5
X 98.5 T 96.0. Furthér iteration on the element design (e.g., with a smaller
Dz) could possibly result in attainment of higher performance.

The method described in the above paragraphs can be employed as a '"first cut" to
configure a high-performance injector. However, to optimize the element, the
recommended approach would be to apply the cold-flow distribution and atomiza-
tion techniques in conjunction with the computerized combustion model to opti-
mize the injector directly for the propellants and design requirements of interest.

6.5 CHAMBER HEAT FLUX CONTROL

Peripheral element designs should be such that they will provide acceptably low
chamber heat fluxes with minimal performance losses. The basic approach to
element designs to achieve this goal is presented herein for both the like-
doublet and coaxial elements.

Peripheral zone like-doublet and coaxial element designs are presented and per-
formance losses associated with the designs are estimated.

‘In general, prior to design of peripheral zone elements, acceptable heat flux
levels must be established for the particular test conditions. Available stand-
ard heat transfer techniques should then be employed to define expected heat
flux levels for the propellant combination and operating conditions of interest.
Figures 22 and 27 can then be used as qualitative guides for design of like-
doublet and concentric tube peripheral zone elements, respectively, to reduce
heat flux levels. For the present example, chamber-compatible designs were
selected and performance losses associated with the designs were estimated.
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6.5.1 Like-~Doublet Pattern

Since the combustion characteristics of LOX/CzHg and FLOX/CH, are similar, the
chamber heat flux data obtained on Contract NAS3-12051 shoulé provide a reason-
able basis for estimation of chamber wall heat flux. Figure 20 presents aver-
age chamber wall heat flux for FLOX/CH; at 500 and 250 psia. Since chamber
heat flux is approximately proportional to pc0.8’ heat fluxes for LOX/C3H8 at
150-psia chamber pressure may be estimated.

To obtain reduced chamber heat flux levels with minimal performance losses, the
elements in the row adjacent to the chamber wall should have a non-zero fan
spacing. However, the elements may operate at the same mixture ratio as the
""core'" elements, since reduced peripheral zone mixture ratio is produced by the
non-zero for spacing. The fans in the ring adjacent to the chamber wall should
have a fan spacing of 3/16 inch and be aligned with the fans turned ~20 degrees
from parallel to the wall, as shown in Fig. 19. This will provide a reduced
chamber heat flux level and should not reduce performance by more than 1%.

An estimation of the performance reduction due to the non-zero fan spacing in
the peripheral zone elements can be obtained using the equation:

Mexmixd = M) Mo pisde * (MF)p (nc*,mix)p
where

MF = mass fraction

c = core elements

p = peripheral zone elements

The peripheral zone mass flow (or percentage of elements) should be approximately
30% of the total. As noted previously, Ne* mix for the core in this example is
98.5. N % pjx for the peripheral zone elements is approximately 4% lower than
that of thé core (page 34). Therefore, n ; . for the chamber-compatible in-
. . c*,mix
jector design would be:

0.7 x 98.5 + 0.3 x 94.5 ¥ 97.5

Atomization would remain essentially unchanged. Consequently, overall perform-

ance ¥ 97.5 x 98.5 = 96.0. This represents approximately a 1% loss in perform-
ance due to the chamber-compatible elements.

6.5.2 Coaxial Pattern

Employing a BLC element clnfiguration similar to that of Fig. 25, appreciable
chamber heat flux reduction could be obtained with minimal performance losses
(~1%, Fig. 28).
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